
HyperCuP Lightweight Implementation

A Universal Solution for Making Application Distributed

Sławomir Grzonkowski
WETI, Gdansk University of Technology, Poland

DERI, NUI Galway, Ireland

slawomir.grzonkowski@deri.org

Sebastian Ryszard Kruk
DERI, NUI Galway
IDA Business Park

Lower Dangan, Galway, Ireland

sebastian.kruk@deri.org

ABSTRACT
Contemporary applications need an efficient solution for com-
munication to implement robust information retrieval mech-
anisms and fault tolerant networks. Apart from implement-
ing an robust, scalable communication protocol the solution
should be accessible with easy to use API that would not
require too much of an effort to use it.

In this article we present HyperCuP Lightweight Imple-
mentation (HLI) which delivers an alternative P2P archi-
tecture based on web services. This implementation has
already been deployed with diverse systems like JeromeDL,
a semantic digital library and FOAFRealm, a distributed
identity management system based on social networking.

We describe an architecture of the HyperCuP Lightweight
Implementation. We show how to deploy it with one’s own
application and how to take advantage of the established
hypercube topology.

Keywords
Distributed Computing, HyperCuP, P2P networks

1. INTRODUCTION
The contemporary applications must be able to process

many queries per second, especially digital libraries that are
affiliated with large universities and host huge databases to
thousands of students. Because of the fact that universities
keep both daily and extra-mural studies, digital libraries are
overloaded during end-of-term examinations period. Fur-
thermore, many of these libraries offer fancy features like
collaborative groups, searching in network of federated li-
braries or Single sing-on registration. Unfortunately, as long
as digital libraries do not utilize semantics, users will repeat
similar queries many times, because first search results usu-
ally do not respond to desired information being sought.

Operations like looking for resources and authentication
in distributed environment cause undesirable network traf-
fic. Our work identifies and combines several techniques

Demos and Posters of the3rd European Semantic Web Conference
(ESWC 2006), Budva, Montenegro, 11th - 14th June, 2006
.

from the Semantic Web to P2P networks, which results in
improving efficiency of communication in e.g. searching for
resources and managing users profiles.

The remainder of this short article is organized as follows:
section 2 describes problems and requirements of distributed
systems. Section 3 provides a short description of the Hy-
perCuP Lightweight Application. Finally in section 4 we
describe the overview of the demo we would like to present
during ESWC 2006.

2. P2P INFRASTRUCTURE FOR SCALABLE
DISTRIBUTED COMMUNICATION

Eventhough most of contemporary applications implement
distributed (or sometimes even ubiquitous) computing paradigm
there is lack of support for developing this paradigm in a
lightweight fashion. Although the requirements are usually
similar, we can found as many various solutions as projects
we encounter. Unfortunately, hardly any of existing solu-
tion have satisfied our requirements. First of all, the ap-
plication like a digital library needs an efficient broadcast
algorithm. Moreover, during the search process all nodes
must be equally balanced in order to prevent from Denial Of
Service (DoS) attack. Secondly, new digital library servers
should not affect the overall network efficiency. Therefore
the solution has to be scalable. Finally, we required an open-
source lightweight framework that could be easily adapted
to existing applications delivering new axis of distributed
computing with least effort possible.

After investigating the problem we have encountered the
idea of HyperCuP (Hyper Cube in P2P) network. The
HyperCuP [4] protocol was invented by Schlosser, Sintek,
Decker and Nejdl as a P2P protocol based on a topology
also known as Caley graph structure.

The protocol provides a fast and an efficient broadcast
algorithm which sends the minimum number of messages
across the network. Moreover, HyperCuP lets nodes to join
and leave the network at any time. The HyperCuP infras-
tructure tends to be balanced most of the time. This can
help in prevent the application utilizing HyperCuP for com-
munication from Distributed Denial of Service attacks. In
the balanced stated, a total number of messages sent to the
network in each broadcast is always equal to log(n ), where
n is the number of nodes in the network.

The reference implementation of HyperCuP has been de-
veloped in the Edutella [1] project. Although the source
code of Edutella is available as an opensource project, we
could not extract the actual core of the HyperCuP proto-



col to use it in our projects. In addition, Edutella contains
many modules which are firmly depended each other. Those
facts induced us to design and implement our own applica-
tion. Based on the requirements presented earlier we have
decided to take the lightweight approach.

3. HYPERCUP LIGHTWEIGHT IMPLEMEN-
TATION

The aim of HyperCuP Lightweight Implementation (HLI)
implementation is to make the opensource system that pro-
vides an easy to use, lightweight framework for extending
almost any kind of applications with distributed computing
features. HyperCuP provides programmer friendly API that
do not require too much effort in order to start using it in
existing projects. This section provides a short overview of
the architecture and describes the practical aspects of using
HLI.

Figure 1: Architecture diagram

3.1 Architecture
The overall architecture of HyperCuP Lightweight Imple-

mentation consists of five modules (see Fig. 1). The Web
Services Integration module is responsible for communica-
tion between different instances of HLI. This module is re-
sponsible for working in distributed heterogeneous environ-
ments. Web services support allows significant interoper-
ability in HLI and delivers the process of turning on SSL
support is far easier.

The Broadcast Module allows user to decide how a peer
(an instance of HLI-enabled application) behaves upon the
arrival of the request from the network. According to the
lightweight approach only a couple of requirements have to
be met to enable HyperCuP in the application. The most
important one is to implement the LocalQuery interface (lo-
cated in the Query Processor module) by the external ap-
plication. The interface has only one method performQuery

which is invoked when the broadcast message arrives to the
peer. The implementation of this method changes the actual
behavior of the peer.

The Broadcast Query Integrator module delivers the im-
plementation of the broadcast processing that is indepen-
dent on the actual application that is HLI-enabled. The
final results of the broadcast message consists of the request
from the sender and responses from the all peers along the
paths integrated in this peer.

Finally the Core Functions module delivers HyperCuP
protocol essential code for creating networks, joining peers
or monitoring the state of the network.

It is worth to mention that the implementation details are
transparent from the user–programmer perspective. Hyper-

CuP Lightweight Implementation required implementation
of only one one interface in order to make application work.
Additionally managing behaviour of HLI can be done with
Configuration module.

3.2 Practical Use
Deploying Lightweight HyperCuP Implementation with

existing application requires several steps. In the begin-
ning, the HyperCuP component has to be initialized by set-
ting some attributes like the address of the web services
interface of this HyperCuP component and the implemen-
tation of the local query interface (currently defined in Java
API). Performing the query results in invoking implementa-
tion of the method performQuery that should be registered
during the initialization step. In result the query is be-
ing executed on every node of the P2P network along the
broadcast paths. There are no constraints on either an im-
plementation of the performQuery method or the way the
query message should be handled, except the requirement
that objects passed as parameters to this method have to
implement the Java Serializable interface.

One additional step is required when running application
for the first time. Since the topology has to be set up, peers
must connect to the HyperCuP network by connecting to
any peer in the network. According to the HyperCuP pro-
tocol this the connection request is routed to the appropriate
peer in order to keep the network in a balanced state.

4. PRESENTATION PLAN
During the demo session we will present how to deliver

distributed paradigm with HLI in a couple of steps to an
existing application. The demonstration will consist of:

1. Deployment with an example web-application.
2. Preparation and implementation of an example query.
3. Connecting nodes to the hypercube topology.
4. Executing the query and show the results.
5. Presentation of existing solutions based on HyperCuP:

• distributed search protocol in JeromeDL [3] - a
semantic digital library.

• distributed authentication protocol in D-FOAF [2]
a distributed identity management system.

4.1 Acknowledgments
This work was supported by Science Foundation Ireland

Grant No. SFI/02/CE1/I131 and by the Knowledge Web
project (FP6 - 507482) and partially by KBN, Poland under
grant No. 4T11C00525. The authors would like to acknowl-
edge Stefan Decker, PaweÃl Bugalski, the DERI Semantic
Web Cluster and the Corrib.org working group for fruitful
discussions.

5. REFERENCES
[1] Edutella project: http://edutella.jxta.org/.

[2] S. Grzonkowski, A. Gzella, H. Krawczyk, S. R. Kruk, F. J.
M.-R. Moyano, and T. Woroniecki. D-FOAF - Security Aspects
in Distributed User Managment System. In TEHOSS’2005.

[3] S. R. Kruk, S. Decker, and L. Zieborak. JeromeDL - Adding
Semantic Web Technologies to Digital Libraries. In DEXA
Conference, 2005.

[4] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl.
Ontology-Based Search and Broadcast in HyperCuP. In
International Semantic Web Conference, Sardinia, 2002.


