
TagFS: Bringing Semantic Metadata to the Filesystem

Simon Schenk, Olaf Görlitz, Steffen Staab
Institute for Computer Science

University of Koblenz
http://isweb.uni-koblenz.de

{sschenk, goerlitz, staab}@uni-koblenz.de

1. INTRODUCTION
Tagging has recently become very popular because of in-

ternet applications like del.icio.us and flickr which allow easy
categorisation of personal information plus sharing it with
a large community. These tools are centralised internet ser-
vices enabling users to collaborate, organise and share per-
sonal information. Most tagging applications are tailored to
a specific set of information objects that the user manages
online at a centralised storage site. To push tagging towards
becoming a significant part of user’s everyday work it should
be integrated in a broad range of desktop applications. To-
day the tool most commonly used for structuring knowledge
among average users is the filesystem. In the following we
introduce TagFS which allows tagging of files as well as tag-
based browsing for arbitrary information objects on top of
the local filesystem. Tagging information is stored in RDF
in order to enable easy integration with semantic web and
semantic desktop applications.

As a use case, attending a conference is a scenario in which
many information objects become relevant: photos taken at
the conference, electronic tickets and reservations, electronic
papers, etc. However, when surveying latest photo shots for
sharing on a photo server, when compiling the latest travel
cost statements, or when sorting the papers to be read by
colleagues, hierarchical organisation of information objects
is inconvenient. In contrast, tags allow for structuring an
information object into the different dimensions for which it
is relevant.

Keywords
Filesystem management, semantic desktop, tagging

2. ARCHITECTURE
Representing information about tagging in an ontology

has the advantage that extensions of the data model and
integration with other semantic aware applications are easy
to realise. Figure 1 depicts the ontology used for TagFS.

Demos and Posters of the 3rd European Semantic Web Conference
(ESWC 2006), Budva, Montenegro, 11th - 14th June, 2006
.

TagFS1 provides filesystem operations (list directory, create
directory, create file, delete file, etc.) that let legacy appli-
cations work seamlessly with TagFS while new applications
can utilise the full power of the tagging-based infrastructure
through extended interfaces on top of the metadata store.
Though TagFS provides all the usual filesystem operations,
the semantics of these operations have been changed signif-
icantly.

2.1 Metadata and Views
TagFS manages all filesystem information as metadata in

a RDF repository following our tagging ontology. All actual
files are stored in a file repository, currently an underlying
conventional filesystem, using unique IDs internal to TagFS.
The metadata-based approach allows for large flexibility. In
particular, it allows to treat other information objects, such
as bookmarks, addresses or emails, equally like files.

The semantics of filesystem operations are defined by que-
ries and update operations on the metadata, i.e. the RDF
graph, plus some minor bookkeeping for physical storage.
We also define views that translate into SPARQL queries.
A view, i.e. the corresponding SPARQL query, is applied
on a RDF graph and always results in another RDF graph
allowing for functional composition.

Figure 1: The Tagging Ontology

2.2 Working Directory vs. Context
An important view, called ‘hasTag’ was defined to select

files related to a given tag. For example, the view hasTag(/,
‘paper’) returns from the complete metadata repository (de-
noted by ‘/’) all MetaFile identifiers tagged by ‘paper’ and
their associated data. Similarly, hasTag(hasTag(/, ‘paper’),
‘WWW2006’) composes two views returning all MetaFile
identifiers tagged ‘paper’ and ‘WWW2006’.

We provide a shorthand query notation for the ‘hasTag’
view and its composition, e.g. ‘/paper/WWW2006’ for the
running example, being equivalent to ‘/WWW2006/paper’,
because the composition of hasTag-views is commutative.
1
This research was partially supported by the European Commission under

contract FP6-027026, Knowledge Space of semantic inference for automatic
annotation and retrieval of multimedia content - K-Space. The expressed
content is the view of the authors but not necessarily the view of the K-Space
project.



Obviously, the shorthand syntax for hasTag-views shows
many correspondences with common directory names. When
a legacy application changes a current working directory, e.g.
from ‘/’ to ‘/a/b/c’, the semantics of subsequent filesystem
operations (‘ls’, ‘rm *’, etc.) will be defined as being ex-
ecuted on the RDF graph returned by the query ‘/a/b/c’
rather than on the complete repository denoted by ‘/’. We
will call the result of a query like ‘/a/b/c’ which is acting as
a kind of “working directory” a working context or simply
context and the query itself the context description.

Hence, the specification of a directory like ‘/a/b/c’ be-
comes a complex metadata graph instead of a simple node
(i.e. directory) in a tree with subnodes (i.e. subdirectories).
To simulate the listing of directories (ls), we provide another
view, called LS, with signature LS: graph → list returning
a list of file- and subdirectory names. This is neccessary to
map view contents to the flat representation required by the
common filesystem interface.

2.3 Modifying Filesystem Information
The set of possible modification operations on the meta-

data repository is described in Table 1 with ctxt being a
context and metafile being the involved MetaFile identifier.
addProperties
(ctxt, metafile)

Add statements to the metadata graph so
that metafile is included in context ctxt.

addProperties
(ctxt1, ctxt2)

For all MetaFiles metafile in context ctxt2
addProperties(ctxt1, metafile).

removeProperties
(ctxt, metafile)

Remove statements from the metadata
graph so that metafile is no longer in con-
text ctxt.

removeProperties
(ctxt)

For all MetaFiles metafile included in
context ctxt removeProperties(ctxt,
metafile).

Table 1: Repository Operations

2.4 Mapping Filesystem Operations to TagFS
Table 2 summarizes the mapping of filesystem operations

to repository operations. Context descriptions have the form
of filesystem paths. If no context description is explicitly
passed as a parameter, we assume that it is implicitly given
by the path to the working directory. When calling an op-
eration for modifying metadata, contexts are resolved from
context descriptions by executing the corresponding query.

The reader may note that only operations like read, write,
create, copy need to distinguish whether the referenced ob-
ject was a proper file or rather another kind of information
object, such as a bookmark or address. To achieve this dis-
tinction, these operations are delegated to ClassHandlers,
which implement them specifically for a certain class of in-
formation objects. For local files, the operations are then
forwarded to the underlying storage system (in our case the
underlying legacy file system).

3. IMPLEMENTATION
Our Linux-based implementation uses fuse2 and fuse-j3

which provide access to the Linux filesystem API from user-
space and expose corresponding java-bindings. Sesame 2.04

is used as RDF repository. Views are not implemented as
simple queries but as objects with a method taking a graph
and additional parameters and returning a graph. The view
object also provides a method which, given a graph, view

2http://fuse.sourceforge.net/
3http://www.select-tech.si/fuse/
4http://www.openrdf.org/

move
oldCtxdesc/File
newCtxdesc/File

removeProperties(oldCtxdesc, MetaFile);
addProperties(newCtxdesc, MetaFile)

rename File
newFile

removeProperties(ctxdesc, MetaFile);
create new metafile with new file name;
addProperties(ctxdesc, newMetaFile)

delete File removeProperties(ctxdesc, MetaFile)
create
subdirectory

addProperties(subdirectory,
placeholder1)

rename oldCtxdesc
newCtxdesc

addProperties(newCtxdesc, oldCtxdesc);
removeProperties(oldCtxdesc); make sure
not to remove statements in the intersec-
tion of old and new context.

delete ctxdesc removeProperties(ctxdesc)
link File
newCtxdesc

addProperties(newContext, MetaFile)

link File
newCtxdesc/newFile

Create new meta file referencing the same
information object as old MetaFile; ad-
dProperties(newCtxdesc, newMetaFile).

link ctxdesc1
ctxdesc2

addProperties(ctxdesc2, ctxdesc1)

create File Create a new information object ref-
erenced by MetaFile, addProperties(
ctxdesc, MetaFile)

read File Read from referenced information object
write File Write to referenced information object
copy File like create file followed by a write

Table 2: Mapping Filesystem Operations to TagFS

parameters and a file returns a graph containing all state-
ments which are neccessary for the File to appear in the
context described by the parameters.

The view hasTag returns a subgraph containing all Meta-
Files which have a Tagging relation to the tag with the la-
bel given as parameter, except a tagging has a validTo prop-
erty which refers to a time in the past. Additionally, all at-
tributes and Tagging relations of the matched MetaFiles are
included in the result graph. addProperty returns a graph
containing taggings, which also include taggedBy and valid-
From properties. removeProperty sets the validTo property.

Only those classes of information objects, for which class
handlers exist, are displayed: By the time of writing only
a class handler for local files has been implemented. In ad-
dition to TagFS we have implemented a filesystem crawler
which tags all files from a given path with tags derived from
their directory and file names. This reduces the coldstart
problem of not having any tagged resources and makes tag-
ging of new files very easy. Files created later within this
directory tree are automatically tagged in the same way.

4. CONCLUSION
We introduced TagFS, a tagging filesystem capable of tag-

ging arbitrary information objects. Future development will
focus on feature enrichment, integration with semantic desk-
top applications and tag dependency analysis based on oc-
currences and use patterns.

First we will improve the handling of information objects
other than physical files and develop views on the history
of taggings. We plan to integrate tagFS with Gnowsis5, a
semantic desktop environment. A major drawback of the
flat tag space is its size, which can easily comprise some
100 tags. Hence, an important feature is tag clustering in
order to reduce the number of tags displayed in one direc-
tory to improve usability. Intelligent clustering algorithms
could make use of usage statistics of tags and of the relations
between tags e.g. through conceptual clustering.

5http://www.gnowsis.org/


